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ASYMPTOTIC BEHAVIOR OF ALDOUS’ GOSSIP PROCESS!

By SHIRSHENDU CHATTERJEE AND RICK DURRETT
Cornell University and Duke University

Aldous [(2007) Preprint] defined a gossip process in which space
is a discrete N X N torus, and the state of the process at time ¢ is
the set of individuals who know the information. Information spreads
from a site to its nearest neighbors at rate 1/4 each and at rate N~¢
to a site chosen at random from the torus. We will be interested in the
case in which a < 3, where the long range transmission significantly
accelerates the time at which everyone knows the information. We
prove three results that precisely describe the spread of information in
a slightly simplified model on the real torus. The time until everyone
knows the information is asymptotically 7' = (2 — 2a/3)N*/3log N.
If ps is the fraction of the population who know the information at
time s and ¢ is small then, for large N, the time until ps reaches e
is T(e) =~ T + N*/?log(3¢/M), where M is a random variable de-
termined by the early spread of the information. The value of p, at
time s = T'(1/3) +tN°/? is almost a deterministic function h(t) which
satisfies an odd looking integro-differential equation. The last result
confirms a heuristic calculation of Aldous.

1. Introduction. We study a model introduced by Aldous (2007) for the
spread of gossip and other more economically useful information. His paper
considers various game theoretic aspects of random percolation of informa-
tion through networks. Here we concentrate on one small part, a first passage
percolation model with nearest neighbor and long-range jumps introduced
in his Section 6.2. The work presented here is also related to work of Filipe
and Maule (2004) and Cannas, Marco and Montemurro (2006), who con-
sidered the impact of long-range dispersal on the spread of epidemics and
invading species.

Space is the discrete torus A(N) = (Z mod N)?2. The state of the process
at time ¢ is & C A(N), the set of individuals who know the information at
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2 S. CHATTERJEE AND R. DURRETT

time t. Information spreads from ¢ to j at rate

- 1/4, if j is a (nearest) neighbor of i,
Yii T\ AN/N2, if not.

If Ay =0, this is ordinary first passage percolation on the torus. If we start
with £ = {(0,0)}, then the shape theorem for nearest-neighbor first passage
percolation, see Cox and Durrett (1981) or Kesten (1986), implies that until
the process exits (—N/2, N/2)?, the radius of the set & grows linearly and &;
has an asymptotic shape. From this we see that if Ay =0, then there is
a constant ¢y so that the time T, until everyone knows the information,
satisfies

P
N

where 5 denotes convergence in probability.

To simplify things, we will remove the randomness from the nearest
neighbor part of the process, and formulate it on the (real) torus I'(IV) =
(R mod N)2. One should be able to prove a similar result for the first pas-
sage percolation model but there are two difficulties. The first and easier to
handle is that the limiting shape is not round. The second and more diffi-
cult issue is that the growth is not deterministic but has fluctuations. One
should be able to handle both of these problems, but the proof is already
long enough.

We consider what we call the “balloon process,” in which the state of the
process at time ¢ is C; C I'(IV). It starts with one “center” chosen uniformly
from the torus at time 0. When a center is born at x, a disk with radius 0
is put there, and its radius grows deterministically as r(s) = s/v/27, so that
the area of the disk at time s after its birth is s?/2. If the area covered at
time ¢ is Cy, then births of new centers occur at rate AyCy. The location of
each new center is chosen uniformly from the torus. If the new point lands
at x € Cy, it will never contribute anything to the growth of the set, but we
will count it in the total number of centers, which we denote by X;.

Before turning to the details of our analysis we would like to point out
that a related balloon process was used by Barbour and Reinert (2001) in
their study of distances on the small world graph. Consider a circle of ra-
dius L and introduce a Poisson mean pL/2 number of chords with length 0
connecting randomly chosen points on the circle. To study the distance be-
tween a fixed point O and a point chosen at random one wants to examine
S(t) = {x:dist(O,z) < t}. If we ignore overlaps and let M(t) be the num-
ber of intervals in S(t) then S’(¢) =2M(t) and M (t) is a Yule process with
births at rate 2pM (t) due to the interval ends encountering points in the
Poisson process of chords. This a balloon process in which the new births
come from the boundaries. As in our case one first studies the growth of
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the ballon process and then estimates the difference from the real process
to prove the desired result. There are interesting parallels and differences
between the two proofs, see Section 5.2 of Durrett (2007) for a proof.

Here we will be concerned with Ay = N~%. To begin we will get rid of
trivial cases. If the diameter of C; grows linearly, then OCON Cydt = O(N3).
So if a > 3, with probability tending to 1 as N goes to oo, there is no long
range jump before the initial disk covers the entire torus, and the time Ty
until the entire torus is covered satisfies

Ty P
~ G where ¢ = /7.

If o= 3, then with probabilities bounded away from 0, (i) there is no long
range jump and T ~ ¢; N, and (ii) there is one that lands close enough to
(N/2,N/2) to make Ty < (1 —d)Ne¢;. Using = for weak convergence, this
suggests that

THEOREM 0. When av =3, Tny/N = a random limit concentrated on
[0,c1] and with an atom at c;.

PRrOOF. Suppose without loss of generality that the initial center is at 0,
and view the torus as (—N/2, N/2]2. The key observation is that the set-
valued process {Cn¢/N,t > 0} converges to a limit D;. Before the first long-
range dispersal, the state of D; is the intersection of the disk of radius ¢/v/27
with (—1/2,1/2]?. Long range births occur at rate equal to the area of Dy
and are dispersed uniformly. Since the distance from (0,0) to (1/2,1/2) is
1/4/2, if there are no long range births before time ¢; = /7 or if all long
range births land inside D; then the torus is covered at time ¢;. Computing
the distribution of the cover time when it is < ¢; is complicated, but the
answer is a continuous functional of the limit process, and standard weak
convergence results give the result. [

For the remainder of the paper we suppose Ay = N~% with a < 3. The
overlaps between disks in C; pose a difficulty in analyzing the process, so we
begin by studying a simpler “balloon branching process” A, in which A; is
the sum of the areas of all of the disks at time ¢, births of new centers occur
at rate Ay A, and the location of each new center is chosen uniformly from
the torus. Let X; be the number of centers at time ¢ in A;.

Suppose we start Cy and Ag from the same randomly chosen point. The
areas C; = Ay until the time of the first birth, which can be made to be the
same in the two processes. If we couple the location of the new centers at
that time, and continue in the obvious way letting C; and A; give birth at
the same time with the maximum rate possible, to the same place when they
give birth simultaneously, and letting 4; give birth by itself otherwise, then
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we will have
(1.1) CiCA, C<A, X;<X; forallt>0.

Xy is a Crump-Mode-Jagers branching process, but saying these words
does not magically solve our problems. Define the length process L; to be
V27 times the sum of the radii of all the disks at time t.

t t
Lt:/ (t—s)dXs= | Xsds,
0 0

t o 2 t
At:/ (t—s) dXS:/ L.ds.
0 2 0

Here and later we use fg for integration over the closed interval [0,¢], that
is, we include the contribution from the atom in dX; at 0 (X =1 while
Xs =0 for s <0). For the second equality on each line integrate by parts
or note that L} = X; and A} = L;. Since X; increases by 1 at rate Ay A,
(X, Ly, Ay) is a Markov process.

To simplify formulas, we will often drop the subscript N from Ay. For
comparison with Cy, the parameter A is important, but in the analysis of A;
it is not. If we let

(13) X/ =X(@\V%),  LE=XBLEAR), A =NBAA),

then (X}, L}, A}) is the process with \ = 1.

To study the growth of A, first we will compute the means of Xy, L,
and A;. Let F(t) = At?/3!. Using the independent and identical behavior of
all the disks in A4, it is easy to show that (see the proof of Lemma 2.4)

(1.2)

t
EX; =1+ / EX,_,dF(s).

Solving the above renewal equation and using (1. 2), we can show

BX= S FH ~ Vi = 5
k=0 k=0 (
)\kt3k+1
(1.4) EL=Y
2 3k + 1))
Akt3k+2
EA; = —_—.
|
2 (3k + 2)

To evaluate V () we note that V' (t)=A\V (¢) with V(0)=1,V'(0)=V"(0)=0,

SO

(1.5) V(t) = Llexp(\/3t) + exp(A\/3wt) + exp(A/3w?t)].
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Here w = (=1 +iv/3)/2 is one of the complex cube roots of 1 and w? =
(=1 —14+/3)/2 is the other. Note that each of w and w? has real part —1/2.
So the second and third terms in (1.5) go to 0 exponentially fast.

If Fs=0{X,,L,,Ar:r <s}, then

P 00 A\ [X,
(1.6) B | Le| F =110 0]]Ls
Ay 01 0/ | A

t=s
Let @ be the matrix in (1.6). By computing the determinant of Q — nI it
is easy to see that ) has eigenvalues 1 = A3 w3 w2 A3 and e (X +
nL; +n?4;) is a (complex) martingale. To treat the three martingales sep-
arately, let

L=X, + AP+ 2284, M, =exp(=\/3)I,,
Jo=Xo + (WAP) Ly + (wA?)? Ay, Jo = exp(—wA?t)];,
Ky =X; + @ADL+ (WIAY3)24,, Ky =exp(—?A/3)K,

so that M; is the real martingale, and jt and f(t are the complex ones.

THEOREM 1. {M;:t>0} is a positive square integrable martingale with
respect to the filtration {F;:t > 0}. EMy = My=1.
EM}E =8 — Lexp(—A/3t) + O(exp(—5A1/3t/2)),
LG, EIR ) = Lexp(2AY31) + O(exp(\Y34/2)).
If we let M =1limy_, oo My, then P(M >0)=1 and
exp(—=A30) X, A3 exp(=AY3t) Ly, A3 exp(—AV34) A, — M/3
a.s. and in L?. The distribution of M does not depend on \.
The last result follows from (1.3), which with (1.2) explains why the three

quantities converge to the same limit. The key to the proof of the convergence
results is to note that 14 w + w? =0 implies

3X, =1+ J; + K,
SAY3L, = I + w2 J; + wkKy,
SNYBAL = I + w); + WK,

The real parts of w and w? are —1/2. Although the results for E |J;|? and
E \Kt|2 show that the martingales J; and K, are not L2 bounded, it is easy
to show that exp(—A'/3t)J; and exp(—A"/3t)K; — 0 a.s. and in L?, and
Theorem 1 then follows from M; = exp(—A'/3t)I, — M.
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Recall that Ay = N~¢ and let

a(t) = (1/3)N?**Bexp(N~3t),  1(t) = N~*3a(t),
(1.7)

x(t) = N~2¢3q(t),
so that Ay/a(t), Li/l(t), X¢/z(t) — M a.s. Let
(1.8) S(e) = N°3[(2 — 2a/3) log N + log(3¢)],

so a(S(g)) =eN?. Let
(1.9) o(e) =inf{t: A; >eN?} and 7(e)=inf{t:C; >eN?}.
The first of these is easy to study.

THEOREM 2. If0<e<1, then as N — oo
N=B(a(e) — S(e)) & —log(M).
The coupling in (1.1) implies T(¢) > o(e). In the other direction, for any

>0

1/3
limsup P[r(e) > o((1 +7)e)] < P(M < (1+~)e/3) + 1157.
N—oo

The last result implies that for € < 1
(1.10) 7(e) ~ (2 = 2a/3) N3 log N.

Our next goal is to obtain more precise information about 7(¢) and about
how |Cy|/N? increases from a small positive level to reach 1.

The first result in Theorem 2 shows that (o(g) — S(¢))/N/3 is determined
by the random variable M from Theorem 1, which in turn is determined by
what happens early in the growth of the branching balloon process. Let

(1.11) R=N3[(2—2a/3)log N — log(M)],
R is defined so that a(R) = (1/3)N? /M, and hence Ap/N? K 1/3. Define
(1.12)  ¥(t) =R+ N°/3, W =1(log(3e)) and I.;=[log(3¢),1]

for log(3¢) <t. W is defined so that a(W) =&eN?/M and hence Ay, /N> Be.
The arguments that led to Theorem 2 will show that if ¢ is small then Cyy /Ay
is close to 1 with high probability.

To get a lower bound on the growth of Cy after time W we declare that the
centers in Cyy and Ap to be generation 0 in C; and Ay, respectively, and we
number the succeeding generations in the obvious way, a center born from
an area of generation k is in generation k + 1. For ¢ > log(3e), let C{fv’ o)

and A"ﬁv w(t) denote the areas covered at time v (t) by respective centers of
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generations j € {0,1,...,k} and let

(t— log(3€))2]
2 Y

go(t)=¢ [1 + (t —log(3¢e)) +
(1.13)
folt) = go(t) — ™.

To explain these definitions, we note that Lemma 4.3 will show that for
any t, there is an g9 = gg(t) so that for any 0 <e < ¢

I P( N=24Y ):0 f 0,
Jim Ssegptl Wos(s) — 90(s)] >n or any 7 >

P(Sier}gft N72(Cyps) — Aip(s) < —57/6) < P(M <) 412,

Since CI(/)V oty S Aww(t) if £ is small, with high probability go(t) and fo(t)
provide upper and lower bounds, respectively, for CSV W)
To begin to improve these bounds we let

t —s 2
ny=1-0-swes(- [ g i),
0g(3e

and define ¢g; similarly. To explain this equation note that an x ¢ CSV w(t)

will not be in Cév w(t) if and only if no generation 1 center is born in the
space—time cone

Kz ={(y,s) eT(N) x [W, (1)) : |y — 2| < ((t) — 5)/V2r}.
Lemma 4.4 shows that for 0 <e <ey and 6 >0,
hmsupP(

N—oo

inf N~ 2Cly ey — f1(5) < —5) < P(M <el/3) 4112,
s€l;

To iterate this we will let
t )2
ey =1- 1= iew(~ [ L) - fia(oas)
log(3e)

for k> 1. The difference fi(s) — fr_1(s) in the integral comes from the
fact that a new point in generation k£ + 1 must come from a point that is in
generation k but not in generation k£ — 1. Combining these equations we have

1= fra(t)
t _s 2
- fen(- [ 52 <fk<s>—fk_1<s>>ds>

og(3¢)

t 5)2 k
:(1_fk—1(t))eXP<_/l o Z (fi(s) = fim1(s)) d >
og(3e
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t _5)2 k
=<1—fo<t>>exp(— / (1) Z(fz(S)—fz1(8))+fo(8)d8>

0g(3¢) 2 =1

so that
2
(L14)  fra (@) =1—(1— fo(t) < S) fk(s)d8>-

Since fi(t) > fo(t), letting k — oo, fi(t) T ( ), where f; is the unique so-
lution of

L15)  f()=1-(1- fo(t))exp<— / N Gl Y ds)

log(3e) 2

with f.(log(3¢)) =¢ —7/5. g,(t) and g.(t) are defined similarly.
ge(t) and f.(t) provide upper and lower bounds on the growth of Cyy
for t >1og(3¢). To close the gap between these bounds we let € — 0.

LeEMMA 1.1.  For any t < oo, if I.; = [log(3¢),t], then as e — 0,
sup |fe(s) = h(s)|, sup |ge(s) —h(s)| =0

SGIEJ SGIE t

for some nondecreasing h with (a) lim;—,_ h(t) =0, (b) lims o h(t) =1,
2

t S
(©) h(t)zl—exp(— /_ (t= . S 1s) ds>
and (d) 0 < h(t) <1 for all t.

If one removes the 2 from inside the exponential, this is equation (36) in
Aldous (2007). Since there is no initial condition, the solution is only unique
up to time translation.

THEOREM 3. Let h be the function in Lemma 1.1. For any t < oo and
0>0,

hm P(sup|N Cys) — h(s)| < (5) =1

N—oo s<t

This result shows that the displacement of 7(g) from (2 —2a/3)N*/31og N
on the scale N®/3 is dictated by the random variable M that gives the rate
of growth of the branching balloon process, and that once C; reaches e N2,
the growth is deterministic.

The solution h(t) never reaches 1, so we need a little more work to show
that

THEOREM 4. Let Ty be the first time the torus is covered. As N — oo

Tn/(N*3log N) 5 2 — 2a/3.
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The remainder of the paper is organized as follows. In Section 2, we prove
the properties of A; presented in Theorem 1. In Section 3, we prove the
properties of the hitting times s o(¢) and 7(¢) stated in Theorem 2. In
Section 4, we prove the limiting behavior of C; mentioned in Theorem 3.
Finally in Section 5, we prove Theorem 4.

2. Properties of the balloon branching process .4;.

LEMMA 2.1. fg sM(t—s)"ds = _(mTT!zTil)!thrnJrl'

ProOF. If you can remember the definition of the beta distribution, this
is trivial. If you cannot then integrate by parts and use induction. [

Let F(t) = At3/3! for t >0, and F(t) =0 for t < 0. Let V(t) = > 72, F*(¢),
where *k indicates the k-fold convolution.

LEMMA 2.2. Ifw=(—1+iy3)/2, then
> N\egdk 1/3 1/3 1/3, 2
V(t)= kzz;) Gkl = g[exp()\ t) 4+ exp(A/ wt) + exp(A/wt)].

PrOOF. We first use induction to show that

Net3k [ (3k)! t>0
2.1 F** () = ’ =
(2.1) ®) {0, t<0.

This holds for £ =0,1 by our assumption. If the equality holds for k£ =n,
then using Lemma 2.1 we have for t > 0

t tyn/4 _ o\3n 2 n+1:3n+3
e = [ syare) - [T g Sl
; o Bl 2 (Bn+3)!

It follows by induction that V(t) = 332, A% /(3k)!. To evaluate the sum
we note that setting A =1, U(t) = e t°F/(3k)! solves

U”(@t)=U(t)  with U(0) =1 and U’(0) = U"(0) = 0.

This differential equation has solutions of the from e7*, where % = 1, that
is, v =1,w and w?. This leads to the general solution

U(t) = Ae' + Be*! + Ce’t
for some constants A, B, C. Using the initial conditions for U(t) we have
A+B+C=1, A+ Bw+ Cuw? =0, A+ Bw?+Cw=0.
Since 1+ w +w? =0, we have A= B =C = 1/3. Since V(t) = U\/3t), we
have proved the desired result. [

Our next step is to compute the first two moments of X;, L; and A;. For
that we need the following lemma in addition to the previous one.
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LEMMA 2.3.  Let {N;:t >0} be a Poisson process on [0,00) with inten-
sity A(+) and let II; be the set of points at time t. If {Y;, Zy:t > 0} are two
complex valued stochastic processes satisfying

}/t:y(t)—i_ Z }/;fi—sﬂ Zt:Z(t)+ Z ZZ—Si’
s; €11t s;€lly

where (Y, Z%), i=1,2,..., are i.i.d. copies of (Y, Z), and independent of N,
then

BY, =y(t)+ /0 B \s) ds,
E(Y;2) = (EY.)(EZ) + / B 70 JA(s) ds.
0

PROOF. N, has Poisson distribution with mean A; = fot A(s)ds. Given
N; = n, the conditional distribution of II; is same as the distribution of
{t1,...,tn}, where t,...,t, are i.i.d. from [0,¢] with density £5(-) = A(-)/As.
Hence

N¢ t
EIN) =y(t) + S EYi, =y(t) + Ny / EY,_.B(s)ds,
i=1 0
and taking expected values EY; = y(t) + fot EY;_)\(s)ds.

Similarly EZ; = z(t) + fot EZ;_s\(s)ds. Using the conditional distribution
of II; given Ny,

B(YGZIN) =y0=(0) +y 0B Y 2L, +=(0E Y YL,

+E

Ny
Z }/:flftl Ztlfti + Z }/:flftl Zg—tj
=1 i#]

t
—yO(0) + y(ON: | EZiu(s)ds
0
t t
T 2()N, /0 EYi_4B(s)ds + N, /O E(Y_sZ_0)6(s) ds

t t
FNN=1) [ Y B)ds [ EZi ) ds
0 0
Taking expectation on both sides and using EN;(N; — 1) = A?, we get
t
E(MZ) = (EY)(EZ) + | B(euZi)\G)ds,
0

which completes the proof. [
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Now we use Lemmas 2.2 and 2.3 to have the first moments.
LEMMA 2.4. E(Xy, L, Ay) = (V (), V" (@) /N V' (£) /).

PROOF. Recall that F(t) = At3/3!. In the balloon branching process, the
initial center z gives birth to new centers at rate F'(t) = \t?/2, and all the

centers behave independently and with the same distribution as the one at x.
So

(2.2) Xe=1+> X,
s; €Il

where II; C [0,] is the set of times when new centers are born in A; and X?,
1=1,2,..., are i.i.d. copies of X, and using Lemma 2.3,

t
EXt =1 + / EXt,S dF(S)
0

Using (4.5) from Chapter 3 of Durrett (2005) and then (1.2):

o )\kt3k
EX,=V(t) =
k=0
t 0 )\kt3k+1
2.3 BELi= | EX,ds=Y ——
(2:3) ! /0 i kZ:O(ZSk:Jrl)!
t o )\kt3k+2
EA = | BLyds=Y 2.
' /0 i kzo (3k +2)!

Since V(t) =1+ Y30 AFF13FH3 /(3K + 3)1, it is easy to see that EA; =
VI(t)/\ and EL; =V"(1)/x. O

LEMMA 2.5. If My = exp(—AY34)[ Xy + ANV/3 L, + N3 Ay, then {M;:t >
0} is a square integrable martingale with respect to the filtration {F;:t > 0}.
EM; =1 and

EM? = 8 — %exp(—)\l/:gt) + 6, where |6, < % exp(—5AY3t/2)
and hence (8)7) — EM? < exp(—=AY/3t).

PROOF. Let h(t,z,/,a) = exp(—A/3t)[x + A\/3¢ 4+ A\?/3a], and let £ be
the generator of the Markov process (¢, Xy, L, A¢). Equation (1.6) implies
Lh =0, so M; is a martingale from Dynkin’s formula. EM; = EMy=1.

To compute EME we use Lemma 2.3 as follows. Let Y; = Z; = X; +
N/3L, 4+ X234, and g(t) = (EY;)?. Since EM; =1, g(t) = exp(2\/3t). Com-
bining (1.2) and (2.2), letting Li = [} X!ds and A} = [/ Lids,i=1,2,...,
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and changing the variables u = s — s;, we see that

t t—Si . .
Lt:/[l—kZX;_si]ds:t—kZ/ Xidu=t+ Y Lj_
0 s;€lls s;€ll; 0 s;€lly
and hence
At:/ [t+ > L;_Sl] ds=1/2+ ) / Liydu=t*/2+ > A} .
0 s;€llg s; €Il 0 s;€lly

Thus all of Xy, Ly and A; satisfy the hypothesis of Lemma 2.3 and so do Y;
and Z;, as they are linear combinations of X;, L; and A;. So applying Lem-
ma 2.3

t
BY?=g(t) + / EY2, dF(s).
0
Solving the renewal equation using (4.8) in Chapter 3 of Durrett (2005),

t
EY?=gxV(t)= exp(2A1/3t) + / exp(2AY/3(t — $))V'(s) ds,
0

where V = Y"7° ) F**. To evaluate the integral we use Lemma 2.2 to conclude

t
/ exp(—2A\Y35)V/(s) ds
0

1 t
:—/ exp(—2)\1/3s)
3 Jo

x A3 [exp(AY3s) + wexp(A3ws) + w? exp(A/3w?s)] ds

17 1
=3 [1 — {exp(-A1P1) 1} + w“i S{exp((w —2)A1%) 1}
w? 2 1/3
+— {exp((w” = 2)A/°t) — 1}|.
w? —2
Now using 1 = —w — w? and w3 =1,
1 w w? _ _w3—2w+w3—2w2_ _é_§
w—2 wr-2 w3 —2w2 —2w2+4 77

Since w = (—1+1iv/3)/2 and w? = (—1—14+/3)/2, the remaining error satisfies
2

310 = ‘ w 5 exp((w — 2))\1/315)‘ + ‘

5 exp((w? — 2)AY3t)

2
- <\w i 2" \cﬂl— 2|> exp(—5A17t/2) <2 Zexp(—5A1/%t/2),
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since w — 2 and w? — 2 each have real part —5/2. Putting all together

t
(2.4) / exp(—2A35)V/(s) ds = % - %exp(—)\l/:gt) + 64,
0

since EM? = exp(—2A'/3t) EY;?, the desired result follows. [
We use the previous calculation to get bounds for EA? EL? and EX?,
which will be useful later.

LEMMA 2.6.  Let a(-),l(-) and x(-) be as in (1.7). Then
EA? < ZLa*(t), EL} <Z*(t),  EX?<Za?(t).

PROOF. By (2.4) we have

t
1
(2.5) | em-N BV s)ds < 2 o= <
0
Now using Lemma 2.3

t t
EA? = (BA)? + / EA? (dF(s),  FEL?=(EL)?* / EL? ,dF(s),
0 0

t
EX?=(EX;)*+ / EX? ,dF(s).
0
Solving the renewal equations EA? = ¢, * V (t), EL? = ¢)l * V( ) and EX? =
¢+ V(t), where V() is as in Lemma 2.2 and ¢, (t) = (EA;)?, ¢1(t) = (EL;)?
and ¢, (t) = (EX;)?. A crude upper bound for ¢, (t) is 9a?(t). Since a(t —s) =
a(t) exp(=A'/%s),

' / 3a?(t)
(2.6) a®+V(t) =d*(t) [1 —l—/ exp(=AY35)V'(s)ds| < 5
0
by (2.5). Hence EA? < 9a% %V (t) < (27/2)a?(t).
Similarly using the bounds 912(t) and 922(t) for ¢;(t) and ¢, (t), respec-
tively, and noting that I(t — s)/l(t) = z(t — s)/x(t) = exp(=A\/35), we get
the desired bounds for EL? and EX?. [

LEMMA 2.7.  Let Jp, K, = e (X, 4+nL +1n%Ay) with n=wA\/3, W2\/3,
respectively. Then J, and K; are complex martingales with respect to the
filtration F, and

E|J)? E|K;|* =1L exp(2)\1/3t) +3+06, where |6, < %exp()\l/3t/2),
and hence E|Ji|?, E|K;|> < (4/3) exp(2A\/3t).
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PROOF. Let h(t,x,/,a) = e " (x +nl+na), and let £ be the generator
of the Markov process (t, X¢, Lt, Ay). Equation (1.6) implies £h =0 when
= \/3w, \/302, so that J; and K, are complex martingales by Dynkin’s
formula
First we compute E|J;|?, where Jp = exp(A/3wt)J;. For that we use
Lemma 2.3 with Y; = J; and Z; = J;, the complex conjugate. Since Jt is
a complex martingale with Jy = 1 and w = (—1+14v/3)/2, EJ; = 1 and hence

|EJ | = exp(=AY30).

Using Lemma 2.3 E|J;|? = |EJ;|? + f E|J;_s|>dF(s). Solving the renewal
equation as we have done twice before

t
E|J;|? = exp(—=A'3t) +/ exp(—=AY3(t — $))V'(s) ds.
0
Repeating the first part of the proof for K; = exp()\l/ngt)f(t, we see that
E|K;|? is also equal to the right-hand side above.
The integral is exp(—\'/3t) times
1

t
3 / exp(A3s) - A3 exp(A35) + wexp(A\3ws) + w? exp(AY3w?s)] ds
0

= % [1 —{exp(@0P) — 1} + wi -{exp((w+ DAV — 13
w2
+ n 1{exp((w2 + DAV3) — 1}] .
Now using 1 = —w — w? and w3 =1,
1 w w? 1 Wtwtwd+w? 3

2 w+l w24+l 2 wWHwdtw+l 2
Since w = (—1+1iv/3)/2 and w? = (—1 —i\/3) /2, if we take

1w 1/3 w? 2 1/3
0y = 3 [w 1 exp((w+ 1)AY7t) + 11 exp((w® + 1A7°t) |,

then

1 1
i) < (o + ey ) P2 < 2exp(3 /),

since each of w + 1 and w? + 1 has real part 1/2. Putting all together
2.7)  BlJ < Lexp(\/31) + Lexp(—AY3t) + Zexp(—A3t/2),

which completes the proof, since E|.J; |2/ E|.J;|? = exp(A\Y/3t) = E|K,|*/ E|K;|?.
O
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LEMMA 2.8. If M =limy_, o My, we have P(M >0)=1 and
M
exp(=AY30) X, A3 exp(=AY3t) Ly, A23 exp(=AY31) Ay — 3
a.s. and in L?.
PROOF. M =limy_,o, M, exists a.s. and in L?, since M, is an L? bounded
martingale. Recall that
L= X+ NPL+ NP4,
Jr=Xi + wA\3L, + w234,
K; = X; +w A3 L, 4+ w3 4.
Since 1+ w +w?=0and w3 =1,
3Xy =1+ J + Ky,
(2.8) AL, =1 + W2 + wKs,
3NBA; = I + wli + WP K.

Since M; = exp(—AY3t)I; — M, it suffices to show that exp(—A'/3t)J; and
exp(—AY3t) K, go to 0 a.s. and in L. We will only prove this for J;, since
the argument for K is almost identical. J; is a complex martingale, so |J;|
is a real submartingale. Using the L? maximal inequality, (4.3) in Chapter 4
of Durrett (2005) and Lemma 2.7,

S,
(2.9) E(max FA ) <AB|J,P < ; exp(2A1/31),

0<

The real part of w is —1/2. So writing J, = exp(AY3(1—w)s)-exp(—=A/35).J;,
we see that

(2.10) E(max PA )2exp(3)\1/3u) (max\exp( Al/gs)JS|2).

u<Ss<t u<s<t
Combining these bounds with Chebyshev inequality, and taking t, =
2)\_1/3logn forn=1,2,...

P( max \exp(—)\l/3s)J5|225>§6*2E< max \exp(—)\l/gs)JS\Q)

tn<s<tp+1 tn<s<tp+1
16 _, 1/3
(2.11) < ?E exp(A? (241 — 3ty))
_ 16 o2 (n+1)*
3 nb
for any € > 0. Summing over n, and using the Borel-Cantelli lemma

lexp(=AY38)J| =0 as.
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To get convergence in L? we use (2.7).
Elexp(=AY3t).J,|* < %exp(—)\l/?’t) —0 as t — 00.

To prove that P(M > 0) =1 we begin by noting that convergence in L?
implies that P(M > 0) > 0. Every time a new balloon is born it has positive
probability of starting a process with a positive limit, so this will happen
eventually and P(M >0)=1. O

3. Hitting times for A; and C;. Recall that o(c) = inf{t: 4; > eN?}
and 7(g) = inf{t: C; > eN?}. Also recall the definitions of a(-),I(-),z(-) and
S(+) from (1.7) and (1.8). Note that a(S(e)) =eN? and A;/a(t), L /1(t), X¢/
x(t) = M a.s. by Theorem 1. We begin by estimating the difference be-
tween M and each of A;/a(t), L;/l(t) and X;/x(t).

LEMMA 3.1.  For any v,u >0

P(inglt/a(t) — M| > 72) < Cytexp(—\u)

for some constant C'. The same bound holds for P(sup;s,,|Li/l(t) — M| > 7?)
and P(supgs,|Xe/2(t) — M| >~?).

ProoF. Using (2.8) Ay/a(t) = My+wexp(—\/3t)J; +w? exp(—\/3t) K.
For 0 <u <t the triangle inequality implies
(3.1)  |A;/a(t) — M| < |My — M|+ |exp(=A38).J;| + Jexp(=A/34) K|

Taking the supremum over ¢,
P(sup|At/a(t) ~ M| > 72)
t>u
(82) < P(suplM; — M| >+2/3) + P(suplexp(-X'/1)5 > +?/3)
t>u t>u
+ P(sup\exp(—/\l/gt)Kt\ > 72/3) .

t>u

To bound the first term in the right-hand side of (3.2) we note that

E(sup\Mt - M|2> = lim E( max |M; — M\Q).
t>u U—oo u<t<U

Using triangle inequality |M; — M| < |M; — M, | + |M,, — M|. Taking supre-
mum over ¢ € [u, U] and using the inequality (a + b)? < 2(a? + b?),

E( max |M; — M|2) < 2<E( max |M; — Mu|2) + B|M, - M|2).
u<t<U u<t<U
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Using the L? maximal inequality, (4.3) in Chapter 4 of Durrett (2005) and
orthogonality of martingale increments,

E( max |M; — Mu|2> <ABE(My — M,)? = 4(EM2 — EM?).
u<t<U
Since the martingale M; converges to M in L?, EM? = lim;_,., EM}? =8/7.
Then using orthogonality of martingale increments and Lemma 2.5,
E(M, — M)? = EM? — EM? < exp(—\"/3u).

Combining the last four bounds with Lemma 2.5, and using Chebyshev
inequality

(3.3) P(sup\Mt - M|>+? /3) <9y~ 10exp(—AY3u).
t>u

To bound the second term in the right-hand side of (3.2) we take ¢, =
u+ 22 "Y3logn for n=1,2,... and use an argument similar to the one
leading to (2.11) together with Chebyshev inequality to get

P(suplesp(-\ 1)) 24%/3) < 3" P(, max lexp(-AV1)] 2 5/3)
n=1 "

t>u <t<tn+1

tn <t<tn+t1

o0
2
§97_4ZE< max |exp(—)\1/3t)Jt\)
n=1
(3.4)
<9 —7 4Zexp 3(2tpt1 — 3ty))

1)
— dgyHexp(- A 3 L

n=1
Repeating the previous argument for the third term in the right-hand side
of (3.2) we get the same upper bound as in (3.4). Combining (3.2), (3.3)
and (3.4) we get the desired bound for A;/a(t).
The bound in (3.1) also works for both L;/i(t) and X;/x(t), since us-

ing (2.8)

Li/1(t) = My 4+ w? exp(—=AY31)J, + wexp(—=AY3) K,

X, /x(t) = My + exp(=AY38).J, 4+ exp(— A3 K
and so the assertion of this lemma holds if A;/a(t) is replabed by L;/I(t)
or Xy/x(t). O

We now use Lemma 3.1 to study the limiting behavior of o(¢).
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LEMMA 3.2. Let W, = S(e/M), where S(-) is as in (1.8) and M is the
limit random wvariable in Theorem 1. Then for any n >0

lim P(|[Aw. —eN?|>nN?) = lim P(|Ly. —eN?~/3| > nN?=/3)
N—o00 N—o00
= lim P(|Xw, —eN?>2/3| > pN2-20/3)
N—o00
=0.
PROOF. Since P(M > 0) =1, given 6 > 0, we can choose v = ~(f) > 0
so that v <n/e and
(3.5) P(M <~)<6.
Using Lemma 3.1 we can choose a constant b= b(~,#) such that

P( sup |A;/a(t) — M| > 72) <9.
t>bN/3

Combining with (3.5)

P( sup |Ay/a(t) — M| > VM) < 20.
t>bN/3

Since a(W.) =eN?/M, by the choices of v and b,
P(|Aw. —eN?| 2 9N?) < P(|Aw, —eN?| 2 eyN?)
— P(|Aw, /a(W,) — M| > 4M)
<20 + P(W. < bN®/3).
By the definition of S(-),

P(W. < bN®/3) = P(M > %NHO‘/?’) -0

as N — 0o, and so imsupy_,o P(|Aw. — eN?| >nN?) < 20. Since § > 0 is
arbitrary, we have shown that

lim P(|Aw. —eN? >nN?) =0.
N—oo

Repeating the argument for Ly, and Xy, and noting that [(W.) =
eN2=/3 /M and z(W,) =eN?2%/3 /M, we get the other two assertions. [

As a corollary of Lemma 3.2 we get the first conclusion of Theorem 2.

COROLLARY 1. As N — 0o, N=%3(5(c) — S(e)) & —log(M).
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PROOF. For any 1 > 0 choose v > 0 so that log(1+ ) <n and log(1 —
7v) > —n. Let W. be as in Lemma 3.2. Clearly W(;;). = S(¢) + N/3[log (1 +

v) —log M] and W(;_,y. = S(e) + N*/3[log(1—~) —log M]. Using Lemma 3.2
P[N O‘/3( (€) = S(e)) > —log M + 1]
P(o(e) > Wiiye) = P(Aw,,.,. < eN?) =0,
P[N a/3( (e) = S(e)) < —log M —n]
§P( ()<W(1 7)) (AW(I W)E>€N2) —0

as N — oo, and the proof is complete. [

The second conclusion in Theorem 2 follows from C; < A;. To get the third
we have to wait till Lemma 3.5. First we need to show that when A;/N?
is small, Cy/N? is not very much smaller. To prepare for that we need the
following result.

LEMMA 3.3. Let F(t)=X3/3\. If u(-) and B(-) are functions such that
—|—f0 (t —s)dF(s) for all t >0, then

u(t) < B*V(t) /5t—5dV s),
where V() is as in Lemma 2.2.

PROOF. Define 5(t) = B(t) + [5 u(t — s) dF(s) — u(t). So B(t) > 0 for all
t>0.If B(t) = ﬁ(t)—ﬂ() then

u(t) = B(t) + /0 u(t — 5) dF (s).

Solving the renewal equation we get u(t) = § % V(t), where V(-) is as in
Lemma 2.2. Since §(t) < (t) for all t >0, we get the result. [

We now apply Lemma 3.3 to estimate the difference between EA; and ECY.

LEMMA 3.4. For any t>0 and a(-) as in (1.7),

11a?(t)
NZ

EC, > EA, —

PRrROOF. In either of our processes, if a center is born at time s, then the
radius of the corresponding disk at time ¢ > s will be (t — s)/v27. Thus z
will be covered at time t if and only if there is a center in the space—time
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cone
(3.6) Ky ={(y,s) e'(N) x [0,t]:|ly —z| < (t —s)/V2n}.
If 0 = sg, s1, 52, ... are the birth times of new centers in C;, then
(t—s:)? (t = s:)?
Ple ¢ Cilsorstn )= ] [1 S |- 3 s,

i:8; <t i:5;<t

since 1 —2 <e™". Let q(t) = P(x ¢ C;), which does not depend on x, since
we have a random chosen starting point. Recall that X; is the number of
centers born by time ¢ in C;. Using the last inequality

4(t) < Eexp {_ /Ot (t— 5)2 dXS}

2N?

and ECy; = N?(1 — q(t)). Integrating e ¥ > 1 —y gives 1 — e % > 2 — 22/2
for x > 0. So

EC, > N2E [1 - exp<— /Ot (t— )" df(sﬂ

2N?

Pt—s)2 - 1( [t{t—35?2 -\?

> N’E dXs — = dXs ) |.

= [ a5 ([ en) |

For the first term on the right we use Ef(t =14+A fg EC,ds. For the second
term on the right, we use the coupling between C; and A; described in

the Introduction, see (1.1), so that we have fg(t —5)%2dX, < fg(t —8)2dX;.
Combining these two facts

2 tr N2 tr N2 2
EC’t>t—+/ =) \pe,ds — — E[/ (t=s) dXS]
0 0

(3.7)

-2 2 2N?2 2
(3.8) 2 t ( )2 2
t t—s FA
= E e
2 /0 5 MCsds— 5

The last equality follows from (1.2), as does the next equation for EA;:

t? Lt —5)? #2 it — g)2
(39) FEA=—+ / QV/(S) ds =—+ / Q/\EAS ds.

2 "), 2 2 )y 2
Here V(-) is as in Lemma 2.2 and FA; =V'(t)/\ by Lemma 2.4. Combin-
ing (3.8) and (3.9), if u(t) = EA; — ECy, and F(s) = As®/3!, then

EA? bt —s)? EA? ¢
u(t) < SN2 —i—/o T)\u(s)ds: e —i—/o u(t —r)dF(r),

where the last step is obtained by changing variables s+t —r. If §(t) =
EA2/2N?, then by Lemma 2.6 8(t) < 27a?(t)/4N?, and using Lemma 3.3
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and (2.6)
27 27 3
u(t) < B*V(t) < == (a®) x V(t) < 2

SRt
AN2 S a® @
which gives the result, since 81/8 <11. [O

To complete the proof of Theorem 2 it remains to show the third con-
clusion of it, which we separate as the following lemma and prove it using
Lemma 3.4.

LEMMA 3.5, For any v >0
1/3
limsup P(7(e) > o((1+7)e)) < P(M < (1 —I—’)/)€1/3) + 116—.

v

N—o00

PROOF. Let U=0((1+~)e) and T = S(¢/3), where S(-) is as in (1.8).
Now
S(e%) = S((1+7)e) = N*/* [~ log(e) — log(1 +7)].
It follows from Corollary 1 that
limsup P(U >T) < P(—log(M) > —% log(e) — log(1 + 7))

N—roc0
= P(M < (14~)e'/3).
Using Markov’s inequality, Lemma 3.4, and a(T) = %/3 N2,
B(Ag —Cr) _6((T)? _ | &/
veN? = ~eN* — ¥
Using these two bounds and the fact that |A; — Cy| is nondecreasing in ¢, we
get

(3.10)  P(|Ap — Cp|>~eN?) <

limsup P[7(e) > o((1 + 7)e)]

N—oo

= limsup P[|Ay — Cy| > veN?|

N—o00

<limsup P(U > T) + limsup P[|Ay — Cy| >~veN? U < T
N—oo N—oo

<limsup P(U > T) + P(|Ar — Cr| > veN?),
N—oo

which completes the proof. [J

4. Limiting behavior of C;. Let CY; be the set of points covered in C; at
time t by the balloons born before time s. If we number the generations of
centers in C; starting with those existing at time s as Ci-centers of genera-

tion 0, then Cg,t is the set of points covered at time ¢t by the generation 0

centers of C;. Let C;t be the set of points, which are either in Cgt, or are
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covered at time t by a balloon born from this area. This is the set of points
covered by Ci;-centers of generations <1 at time ¢, ignoring births from
C;t \Cgt, which are second generation centers. Continuing by induction, we

let Cf,t be the set of points and C’slf”t = |C§,t\ be the total area covered by

Ci-centers of generations 0 < j < k at time ¢. Similarly A]S“,t denotes the total
area of the balloons in A; of generations j € {0,1,...,k} at time ¢, where
generation 0 centers are those existing at time s.

Recall the following definitions from (1.7), (1.8), (1.11) and (1.12).

a(t) = (1/3)N**/3 exp(N /1),
S(e) = N*/3[(2 — 2a/3) log N + log(3¢)],
R = N*3[(2 = 2a/3)log N —log(M)],
where M is the limit random variable in Theorem 1, and for log(3¢) <t,
Yt)=R+ N3t W=1(log(3e)) and I, =[log(3e),1].

Note that t(t) <0 only if M > N?2/3¢,
Obviously Cgt < Agt. For the other direction we have the following lemma.

LEMMA 4.1. For any 0 <s <t,

2
200, > BAL, — “ )y (1 - )x1/%)

N2
where for some positive constants c1,co and cy,
(4.1) p(x) = ¢ + cox? /2! 4 cyxt /4.

PROOF. By the definition of A9,
S t _ 2 t _ 2
(4.2) Ag,t:/ %dXT: %Xs—k(t—s)Ls—i-As.
0

For the second equality we have written (t —r)% = (t —s)? +2(t —s)(s —7) +
(s —7)? and used (1.2). As in Lemma 3.4, a point z is not covered by time ¢
by the balloons born before time s, if and only if no center is born in the
truncated space—time cone

Kpwo={(9,7) €T(N) x [0,8]: |y — a] < (¢ — r)/v/27).

So using arguments similar to the ones for (3.7) and 1 — e % >z — 22 /2,

0 2 (t—r)?
ECS, > N°E |1 —exp| — e X,
0

S(t-r)? o 1 St-r)? o\’
> N?|E ( Xr——E/ ).
= [/0 2N2d 2(0 2N2 X
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For the first term on the right, we use Ef(t =1+ fot EC,ds. For the second
term on the right, we use the coupling between C; and A; described in the
Introduction, see (1.1), to conclude that

/(t—r)Qerg/ (t—r)*dX, =2A7,.
0 0

Combining these two facts, using the first equality in (4.2), EX; =1+
/\fg EA,ds, and Lemma 3.4,

12 S(t—r)? E(AD,)?
ECY, > — NEC, dr — ———2—
Cs,t = 2 +\/0 2 C A 2N2

£y el EAL)
13) >S4 [ pagy o [ EEDEAT ZEst)
@43 =3 +/0 > ’ /0 3 N2 T Tan?

S (t—1)? Xa?(r) B(A],)?
=FEAY, —11 ( — L
it /0 SR CEE) ¢

To estimate the second term in the right-hand side of (4.3), we write
(t—7)2/2=(t—5)%/24 (t—5)(s —7)+ (s —7)?/2,

change variables r = s — ¢, and note a(s — q) = a(s) exp(—A/3q), to get

S (t—r)?
/0 T)\aZ(r) dr

_ 2 (t_5)2/\2/3 S/\1/3 —_o\30)d
=a(s)| 5 ; exp(—2A"/"q) dg
S
(4.4) —|—(t—s))\1/3/0 NBgexp(—2A13q) dg

s 2
+ / )\% exp(—2)\1/3q) dq]
0

< @ [L _QS)QA?/?’ F(t— s\ 4 1} .

For the last inequality we have used

r¥exp(—ur) d’r</ réexp(—ur)dr=——.
/ O e

To estimate the third term in the right-hand side of (4.3) we use (4.2) to get
E[(A2,)?] <3[EXZ(t—s)'/A+ ELY(t — s)* + EAZ).



24 S. CHATTERJEE AND R. DURRETT

Applying Lemma 2.6 and using the fact that a(s) = A"Y31(s) = A\=/3z(s),

—_5)4
Bl <3 5 |20 U 4 B 52+

(4.5)
<243a2(8)|:(t i ) )\4/3 ( 5 ) )\2/3+1:|

Combining (4.3), (4.4) and (4.5) we get the result. O

To show uniform convergence of C{fv w() to Cy(.), we also need to bound

the difference A; and A’;t for suitable choices of s and t.

LEMMA 4.2. IfT = S(e%/3), where S(-) is as in (1.8), then for any t >0
Y
<3N Y ey

j=kt1

T T+tNe/3

PROOF. By (4.2) EAY, = EA, + EL(t — s) + EX,(t — 5)?/2. If XF,
and L’;t denote the number of centers and sum of radii of all the balloons
in Ay of generations j € {1,2,...,k} at time ¢, where generation 0 centers
are those which are born before time s, then for ¢ > s,

d d d
Spxi=nopa,  Leo-pxl,  Leal-mLl,

Integrating over [s,t] and using (4.2) we have

r t— 2 t— 3
EX, =N (- s)BA, 1+ 2,8) ELy+ 3,5)

EXS],

t— t—s)3 t—s)t
ELL, =N~ ( 2.8) Fa, + 3!8) EL,+ 4!8)

I _ o] (E—8)° (t—s)" (t—s)°
EA;, =N a0 —FA,+ m —FLs+ 5
Turning to other genera‘mons, for k>2 and t > s,

d

dt
d

dt
d

dt
and using induction on k£ we have

EXS},

—(EXF, - EXE;N) = N~ (EAE — BAE?),
—(BLF, - BLF Y = (BXE, - EXITY),

(EA];,t - EA];;l) = (Eng,t - ELI;;l)a

(t — 5)¥+1 (t — 5)¥7+2

A A EX,|.
(35 +1)! S (35 +2)! s

k
il =)
BAE, =3"N aﬂ[(iEA +
b= (37)!
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Since Alg,t T A forany s <t, FA; = limg o EA’;t by Monotone Convergence
theorem. Replacing s by 7' and ¢ by T + tN®/3,

EAp inoss — EfﬂfF,T-HNa/3
(4.6)

© 37 3j+1 3542
t o) 37
- — FAr+ ——N°BELp+ ———N?**3px,|.
jz,;ﬂ [(33)! (37 + 1! (35 +2)!

Using the fact that EAy + NY3ELy + N**/3EXp —3a(T) =0 and a(T) =
£2/3N?, the right-hand side of (4.6) is < 3¢%/3 N2 > i1t /3!, which com-
pletes the proof. [

Recall the definitions of v (-), W and I.; from the displays before Lem-
ma 4.1 and that for log(3¢) <t,

(t — log(3€))2} .

(4.7) go(t)=¢ [1 + (t —log(3e)) + 5

LEMMA 4.3.  For any t < 0o, there is an €9 =¢eo(t) > 0 so that for 0 <
e <e€p,

A}i_r}n()(}P( Sl}p |N_2A%7¢(S) —go(s)] > 77) =0 for any n >0,
selet

P inf N 72Oy~ M) < —<7%) < POM <9) 212,

ProOOF. To prove the first result we use (4.2) to conclude
(t —log(3¢))?

A%V,w(t) = —2 NZO[/BXW + (t — log(gs))Na/gLW + Aw.
Applying Lemma 3.2
Jim P sup (N2 )~ g0(s)| > )
—(2— 2n

< lim P(IN"@ 228 x,, o> 21

= Noeo (' w—el> 3(t —log(3¢))?

lim PN~y o> 1

N <‘ Wl > 3 T0a(39))

. —9 B n _
—i—]\/lgIlOOP(‘N Aw E|>3> 0.
Let €9 = eo(t) be such that 5(1)/121)(15 —log(3¢)) <1, where p(-) is the
polynomial in (4.1). Let T = S(¢?/?), where S(-) is defined in (1.8), and

T' =T + (t — log(3¢))N®/3. Using the fact that Al —C?.1, is nonde-
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creasing in s, Markov’s inequality, and then Lemma 4.1 we see that

P (ssgpt‘A(V)vas) ~ Ofyuiol > 7/°N% W <)

E|A7 7~ Cpp
cT/6 N2

< P(|AS 7 — C | > /NP <

_ aX(T)p(t — log(32))
c7/6 N4
Noting that P(W > T) = P(M < £'/3),a(T) = 2/3N? and "/2p(t —
log(3¢)) < 1 for & < g9 we have

P( sup [Aw,y(s) = Cwiu(s)| > 67/6N2> < P(M <3412,

SEIa,t

which completes the proof. [J

Our next step is to improve the lower bound in Lemma 4.3. Let
=N Ay — <"
On the event

(4.8) F={|N72Cly 4| = p{ for all s € I 1},

which has probability tending to 1 as € — 0 by Lemma 4.3, CI(/)V w(s) Can be
coupled with a process BS}(S) so that N*Z\BS}(S” =p% and Cng(s) 2 BS}(S) for
s€l. . Iffork>1 be(t) is obtained from Bg(t) in the same way as Clljv,w(t) is
obtained from CI(/)V,w(t)’ then, on F, C‘]jV,d)(s) D B:Z(S) for s€ I, ;. For k> 1 let

ps = N72IBj |-

We begin with the case k= 1. For fo(t) = go(t) — €7/, where gq is as in (4.7),
let

t )2
(1.9) fl(t)=1—(1—fo(t))eXp<— / L )fo<s>ds).

og(3s) 2

LEMMA 4.4. For any t < oo there is an g9 = go(t) > 0 so that for 0 <
e<eg and any § >0,

limsupP[ inf (NfQC'éVﬂMS) — fi(s)) < —(5] < P(M < e/3) /12,

N—o00 Sels,t

PROOF. As in Lemma 3.4, if z ¢ Bg}(t), then z ¢ Bi(t) if and only if no

generation 1 center is born in the space—time cone

20 ={(y.5) ET(N) x [W,p(t)]: |y — 2| < ((t) — 5)/V2}.
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Conditioning on G = J{BS}(S) :s € I.+}, the locations of generation 1 cen-
ters in B} is a Poisson point process on I'(N) x [W,(t)] with intensity
]\[72 X |BS‘N7Q — p?’z)_l(s)Nia.
Using this and then changing variables s = 1)(r), where () = R4+ N/3r,

¥(t) _5)2
Pl Bl =0 dew(- [ LT vea)

t t—r 2
= (1 - p) exp <—/ %Pg dr).
log(3e)

Let Epy = {x ¢ B}}. Since K£; and K, are disjoint if |z —y| > 2(t —
log(3¢))N®/3 /\/2r, the events E,; and E,; are conditionally independent

given GP if this holds. Define the random variables Y, = € I'(IV), so that
Y, =1if E;; occurs, and Y, = 0 otherwise. From (4.10)

¢ _g)2
@) BmIe) - Mes(- [ LT 0a),

o0g(3¢)

Using independence of Y, and Y, for |z — z| > 2(t — log(3¢))N®/3 /\/2x,
and the fact that {z:|z — 2| < 2(t — log(3¢))N®/?/\/21} has area 2(t —
log(3e))2N2/3,

V&I‘(/ dex|g§>
z€l'(N)

(4.11) - / (Y, Y.[G?) — (Y| E(Y.|60)) de =
z,2€T(N)

< N2 2(t — log(3¢)) > N2/3,
Using Chebyshev’s inequality, we see that

P( /xer(m(y‘” — B(Y,|GY)) dx

> gNQ‘g?>
(4.12) )
ser(v) Yo dz|Gy)
772N4
Combining (4.10), (4.11) and (4.12) gives

P(ja=b - e (- [ . “‘;)ng’ds)' > 2lop)

og
8(t —log(3¢))?
n2N2-20/3

- 4var( [
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The same bound holds for the unconditional probability. By Lemma 4.3 if
n >0 and

Foy= { sup ‘P(s) — fo(s)| < 77} then lim P(F(in) =0.
N—o00

SGIg,t

Let i/ = n[1+ (t—1log(3¢))3/3!71 /2. Using (4.9) and the fact that for z,y > 0

y
/ e *dz
x

we see that on the event Fp,/, we have for any s € I.;

a-mes(- [ LT gar) - a0

(4.13) e —e Y| =

< |.T—y‘,

og(3¢)
s s—r 2
<la-M-a-s+d [
log(3e)
—log(3¢))* _n
< /(5— <
= 31 =9
So for any s € I, ;
lim P(|pg — fi(s)] >n)
N—oo
< lim P(F§,,
7Ng>noo ( 0’77)
s )2
+ lim P('(l—p;) —(1 —pS)exp(—/ (s=r) deT) > ﬂ)
N—o0 log(3¢) 2 2

=0.

Since n > 0 is arbitrary, the two quantities being compared are increasing
and continuous, and on the event F defined in (4.8) N—2Cj;, W(s) 2 pl for

S € I&,tv

limsup P| inf (NfZCéV’w(S) — f1(s)) < —5}

N—oco s€let

< P(F9)+timsup P sup [p} — fi(s)] > 8) < P(F€),

N—oo SEIg’t

and the desired conclusion follows from Lemma 4.3. O

To improve this we will let

¢ _ g2
119 ) =1-0-fyer(- [ G0 - fiio)as),

og(3e)
and recall from (1.15) that as k1 oo, fr(t) T f=(2).
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LEMMA 4.5.  For any t < oo there is an g9 = go(t) > 0 so that for 0 <
€ <eg and any § >0,

hmsupP[ 1nf (N Cd} — fe(s)) < —(5] < P(M < &Y/3) /12,
N—o0 sele
ProoF. Conditioning on GF = U{Bi)(s) :0<j<k,sel.;}, we have
k+1 k G
Pla g 85316 = (1= phyexp -~ [ 50k = oty as)

Let Fy, , = {supsefa,t Ipf — fr(s)| <n}, and o' = n[1+2(t —log(3¢))3 /3!~ /2.
Using (4.14) and |e™* — e Y| < |z — y| for =,y > 0, we see that on the event
Gkﬂl = Fkﬂl N Fk,Ln/, for any s € Ie,t

a-sbes(= [ LR ki) - o)

og(3¢)

t 62
<\<1—pf>—<1—fk<t>>\+2n'/ (=57 4

log(3e) 2

=1 + 21 (t - log(3¢))* /3 < n/2.
Bounding the variance as before we can conclude by induction on k that for
any 1 >0

(4.15) lim P( sup |p¥ — f(s)| > 77) =0.

N—o0 SEIat

Next we bound the difference between fy(t) and f-(t). Let G(t) = t3/3!
for t >0 and G(t) =0 for t < 0. If xk indicates the k-fold convolution, then
for k > 1, using arguments similar to the ones in the proof of Lemma 2.2,
G*k( ) =3 /(3k)! for t > 0 and G**(t) =0 for t < 0. Now if f* G (t) =

Jo £t =7)dG™(r), fi(-) = fu(- +1log(3e)) and fo() = fo(- + log(3e)), then
changing varlables s—t—rin (1.14) and (1.15), and using the inequality

n (4.13),
|fi(t —log(3¢)) — fu(t —log(3e))|
< lexp(—fi—1 * G(t —log(3¢))) — exp(—f * G(t —log(3¢)))|
Vfeor— ElvCl—log3e).
Iterating the above inequalityNand using |f-(s) - fo(s)| = fe(s) — fo(s) <1
|[fi(t) = fe(8)] = [ fr(t — log(3e)) — fe(t — log(3e))]
(4.16) < |[fo— Jel % G**(t —log(3¢))

(t —log(3¢))3k

<G (1~ log(3e)) =

where the last equality comes from (2.1).
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Choose K = K (g,t) so that (¢t —log(3¢))** /(3K)! < /2. Since Cy) >
Ci]jv,;z;(t) for any k£ > 0, and on the event F' defined in (4.8), we have CI]/CV,w(t) >
\sz(t)\, we have

p( inf (N"2Cy,) — f-(s)) < —5) < P(F°) + P( sup |oX — fi(s)| > 5/2).
SGIE’t SEIa,t
Using (4.15) and Lemma 4.3 we get the result. [

It is now time to get upper bounds on Cy). Recall go(t) defined in (4.7),
let g_1(t) =0 and for k£ >1 let

gr(t) =1 —= (1 = gp—1(t))
t t— 5)2
ce( [ g0 - s as).
log(3e)
As in the case of fi(t), the equations above imply
t t—s 2
wl)=1- (= aes(- [ D0 a),
log(3e)
so we have gi(t) T g-(t) as kT oo, where g.(t) satisfies

gs(t)zl—(l—go(t))exp<— /1 “‘28)295@)6;8).

o0g(3¢)

(4.17)

LEMMA 4.6. For any t < oo there exists g9 = o(t) > 0 such that for
0<e<eg and any § >0,

limsup P | sup (N*ZCw(s) —g=(s)) > (5] < P(M < e'/3) 4+ &%/3.

N—oo SEIg’t

PROOF. CI(/)V,w(t) < A%,’w(t). If (b(t) = N*2A3V7w(t) is the fraction of area
covered by generation 0 balloons at time 1(t), generation 1 centers are born
at rate N Z*O‘qb?p_l(.). Let ¢} denotes the fraction of area covered by centers
of generations <1 at time (), then using an argument similar to the one
for Lemma 4.4 gives

lim P(sup bl —gl(s)>7]) =0

N—oo SEIa,t

for any 1 > 0. Continuing by induction, let gbf be the fraction of area covered
by centers of generations 0 < j < k. Since (4.17) and (4.14) are the same
except for the letter they use, then by an argument identical to the one for
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Lemma 4.5,

(4.18) im P sup |6t — gi(s)| >n) =0

1
N—oo SEIa,t

for any 1 > 0. Now using an argument similar to the one for (4.16)

1o 3k
(4.19) Ssél}gtlgk(S) — 9=(s)| < %-

Next we bound the difference between CF, oy and Cyy. Let T'=5 (e2/3),
where S(-) is as in (1.8). Using the coupling between C; and Ay,

Cu) — Civpiy < Apit) = Avpiey-

Using the fact that KA, — EA’;S 4 is nondecreasing in s, the definitions
of W and T, Markov’s inequality, and Lemma 4.2, we have for 7" =T + (t —
log(3<)) N/,

SN?
P < sup (Cyy(s) = Clirpgs)) > —— )

s€let

SN2
SP(W>T)+P AT’_AT,T’>T

4
< P(M < 51/3) + WE(AT, — AT,T’)

12623 S (t — log(3¢))!
1/3
<SP(M <e'?)+— Z i .
Jj=k+1
Choose K = K(e,t) large enough so that 3 7% r- ., (t — log(3¢))7 /4! < 6/12.
If we let

Fg = { sup (Cy(s) — Ciy () < (5/4)1\72}7

sl
then
P(F§) < P(M < e'/3) 4 £%/3.
By the choice of K and (4.19), supsc. |95 () — g=(s)| < J/2. Combining the

last two inequalities and wusing the fact that N _QCV[‘i () < oF =

2K
N AW,IZJ(S)’

P( sup N72Cy(q) = ge(s) > 8) < P(Fg) + P sup |05 — gic(s)] > 5/4).

s€lect s€let

So using (4.18) we have the desired result. [J
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Our next goal is:

Proor orF LEMMA 1.1. We prove the result in two steps. To begin we
consider a function h.(-) satisfying h.(t) = e!/3 for t < log(3¢).

log(3e) )2 s t a2
(4.20) h.(t)=1-— exp(— / (t=s) e ds — / (t=s) he(s) ds)
—00 2 3 log(3e) 2

for t >1log(3¢), and prove that h.(-) converges to some h(-) with the desired
properties.

LEMMA 4.7.  For fized t, ho(t) in (4.20) is monotone decreasing in €.

Proor. If we change variables s =t — u and integrate by parts, or re-
member the first two moments of the exponential with mean 1, then

t o)
/ (t—s)e’ds = / ue' ™" du = e,
—o0 0

t 2 oo ,,2 o]
t_
/ Qes s:/ u—etudu:et/ ue “du=e’.
—0o0 2 0 2 0

Using (t —8)2/2=(t—1)?/2+ (t —7)(r — s) + (r — 8)?/2 now gives the
following identity

(4.22) / (t_QS)QeSds:eT [# +(t—r)+1}

(4.21)

—0o0

Using (4.20), the inequality 1 — e~ * <z, (4.21), and changing variables s =

t—u,
1 L (t—s)? 1
he(t) — =t < he(s) — =€ | d
() 36 _/1 (3¢) 2 ( (8) 36> y

og

t—log(3e) 2
= / <h5(t —u) — 1et_“> Y du.
0 3 2

Applying Lemma 3.3 with A=1 and S(-) =0 to h.(- + log(3¢)) — exp(- +
log(3¢))/3,

he(t) — 3" <0 for any ¢ > log(3¢).

This shows that if 0 <e < § <1, then hg(t) > h.(t) for t <log(30). To com-
pare the exponentials for ¢ >log(34), we note that

[ (e~ ke Yass [ ) ey

og(3e) 2 3 0g(39) 2

t—log(39) 12
<0+/ (he(t —u) — hs(t — )2 ds.
0
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Applying Lemma 3.3 with A =1 and S(:) =0 to h.(- + log(3d)) — hs(- +
log(30)), we see that h.(t) — hs(t) <0 for ¢t >log(39). O

LEMMA 4.8. h(t) =lim._,ohe(t) exists. If h £ 0 then h has properties
(a)—(d) in Lemma 1.1.

PROOF. Lemma 4.7 implies that the limit exists. Since 0 < h.(t) <e'/3,
0 < h(t) <e'/3 and so limy_, . h(t) = 0. To show that

t AV
(4.23) h(t)zl—exp(— / (t 28) h(s)ds),
we need to show that as ¢ — 0
t AV t A
(4.24) / =), (s)ds — / =9 s ds.
log(3e) 2 —0o0 2

Given n > 0, choose § = d(n) > 0 so that
S[1 + (t —log(38)) + (t — log(38))?/2] < n/4.

By bounded convergence theorem, as € — 0,

t )2 t )2
/ (t=s) he(s)ds — (t—s) h(s)ds.
log(39) 2 log(39) 2

So we can choose £y = £¢(n) so that the difference between the two integrals
is at most 7/2 for any e < g9. Therefore if € < g¢, then

t (t—s)? bt —s)?
/1 5 he(s)ds — / Th(s) ds

os(3e) e
log(39) (+ _ o\2 1

<749 / =51 s
2 ) 2 3

Using the identity in (4.22) we conclude that the second term is

< 28[1 + (t — log(36)) + (t — log(30))2/2] < g

This shows that (4.24) holds, and with (4.20) and (4.22) proves (4.23).
To prove lim;_, h(t) = 1 note that if h(-) # 0, then there is an r with
h(r) >0, and so for t >r

Eo(t—s)? t(t— )2 t—r)3
/oo( Q)h(s)dszh(r)/r %dS:h(?“)( 3!) — 00

as t — 00. So in view of (4.23), h(t) — 1 as t — oo, if h(-) Z0.
The last detail is to show if () Z 0, then h(t) € (0,1) for all ¢. Suppose, if

possible, A(ty) = 0. Equation (4.23) implies [*_h(s)[(t — 5)?/2] ds = 0, and
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hence h(s) =0 for s <ty. Changing variables s — ¢t — r, and using (4.23)
again with the inequality 1 — e~ <z, imply that for any t > tg

t —5)2 t—to P
h(t)</oo ¢ . ) h(s)ds:/o e =) dr

Applying Lemma 3.3 with A=1 and 5(-) =0 to the function h(- + (), we
see that h(t) <0 for any t > to. But h(t) >0 for any ¢, and hence h =0,
a contradiction. [J

To complete the proof of Lemma 1.1 it suffices to show that |f.(-) — he(-)]
and [g:(-) — he(+)| converge to 0 as ¢ — 0. To do this, note that if

log(3e) (+ _ \2 .8
ho(t)zl—exp<—/ (t 28) %ds),

¢ _g)2
he(t)zl—(l—ho(t))exp<— /1 (3)“ ) h€<s>ds),
og(3e

then

and so using the inequality |e™® —e™Y| < |z — y| for x,y >0,

t g 2
|he(t) — ge(t)] < |ho(t) — go(t)] _|_/ (t )

log(3e) 2

|he(s) = g<(s)| ds.

Using the inequality 0 < e™* — 14z < 22/2 and the identity in (4.22),

2
[ho(t) = go ()] < % [e +e(t — log(3¢)) + Ew]
< 214 e oataeyt + (B0

Applying Lemma 3.3 with A=1 and 3(t) =1 + 1% +t*/4 to the function

|he (- +1log(3e)) — ge (- +1og(3¢))],

we have |he(t) — g-(t)] < (362 /2)B8 x V(t —log(3¢)), where V(-) is as in Lem-
ma 2.2. Using A =1 in the expression of V(-) and Lemma 2.1,

B*V(t)=pB(t) —i—/o Bt —s)V'(s)ds

0 t3k t3k+2 t3k+4
2 6
2 [(3;@! TG

< 6el.
Ger o] =%

So |h-(t) — g=(t)| < (32/2) - 6exp(t — log(3¢)), and so
sup |he(s) — ge(s)| < 6eet /2.

Sels,t
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Repeating the argument for f.(-), and noting that |ho(t) — fo(t)| = |ho(t) —
go(t)] +e™°,

1
sup |he(s) — fo(s)] < (6;62 + 67/6> exp(t —log(3e)) = <§El/6 + 35) et
SGIg,t

This completes the second step and we have proved Lemma 1.1. [
Now we have all the ingredients to prove Theorem 3.

PROOF OF THEOREM 3. Let h(-) be asin Lemma 1.1. Choose ¢ € (0,6/6)
small enough so that

sup |g-(s) — h(s)] <6/2, sup | f(s) — h(s)| <0/2.

s€let s€let

Let D= {M < 3sN?72%/3}, On the event D, W = (log(3¢)) > 0. So

) .
P(iguv Cys) h(s)|>5>

< P(D°) + P(N2Cy + h(log(3¢)) > §)

(4.25)
+ P( sup (N~ Cw(s) h(s)) > 5)
SEIa t
# P (V0o — ) < -0).
To estimate the second term in (4.25) note that h(log(3e))<(1/3) exp(log(3¢e)) <

9/2 and
P(N2Cyw >6/2) < P(Aw > (§/2)N?) =0

as N — oo by Lemma 3.2. To estimate the third term in (4.25) we use
Lemma 4.6 to get

lim supP( sup (N*QCw(S) —h(s)) > 5)

N—oo SGIE,t

< limsupP( sup (N*QCw(S) —g:(s)) > 5/2)

N—o0 SGIE,t

<P(M< 51/3) +2/3.
For the fourth term in (4.25) use Lemma 4.5 to get

lim supP( inf (N_QCU,(S) —h(s)) < —5)

N—o00 s€let

glimsupP( inf (N 201/, — fe(s)) < —5/2)

N—oo s€le,t

< P(M < &'/3) 4 e'/12,
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Letting € — 0, we see that for any ¢ > 0,
(4.26) A}i_r)nooP( sup [N "2Cyy(y) — h(s)| > 5) — 0.

SGIg,t

It remains to show that h(-) # 0. Let ¢, be such that

c1/3
PIM < (147)e3] +11— < 1.
gl

Fix any 7> 0 and let ¢y =log(3e(1 + ) + 3n). Using Lemmas 3.2 and 3.5
lim sup P(NfQC'w(tO) <e)

N—oo
= limsup P(7(¢) > 9(ty))
N—oo
<limsup P[r(e) > o(e(1 +))] + limsup Plo(e(1 + 7)) > ¢ (to)]
N—oo N—o0
<limsup P[7(g) > o(e(1 +7))]
N—oo
+ lim sup P(\N_QAWE(IMH,, —e(l4+v)—nl>n)
N—o00
21/3

<PM<(149)eP+11— < 1.
v
But if h(tg) =0, we get a contradiction to (4.26). This proves h(-) Z0. O
5. Asymptotics for the cover time.

PrROOF OF THEOREM 4. Theorem 3 gives a lower bound on the area
covered whcih implies that if 6 > 0 and N is large, then with high probability
the number of centers in Cy) dominates a Poisson random variable with

mean A\(§)N2~(22/3)  where

0
A(0) :/ (h(s) —6)" ds.
—00

If ¢ is small enough, A\g = A(dp) > 0. Dividing the torus into disjoint squares
of size kN®/3,/Iog N, where « is a large constant, the probability that a given
square is vacant is exp(—Agx?log N). If k1/Iog N > 1, the number of squares
is < N2-(2/3) Qo if \gk? > 2, then with high probability none of our squares
is vacant. Thus even if no more births of new centers occur then the entire
square will be covered by a time 1(0) + O(N*/3\/log N). [
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